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The linear-eddy approach for modelling molecular mixing in turbulent flow involves 
stochastic simulation on a one-dimensional domain with sufficient resolution to 
include all physically relevant lengthscales. In each realization, molecular diffusion 
is implemented deterministically, punctuated by a sequence of instantaneous, 
statistically independent ‘rearrangement events ’ (measure-preserving maps) rep- 
resenting turbulent stirring. These events emulate the effect of compressive strain on 
the scalar field. An inertial-range similarity law is incorporated. 

The model reproduces key features of scalar power spectra, including dependences 
of spectral amplitudes and transition wavenumbers on Reynolds and Schmidt 
numbers. Computed scaling exponents governing scalar power spectra, higher-order 
fluctuation statistics such as structure functions, and the spatial distribution of 
scalar level crossings are close to measured exponents. It is inferred that the 
characterization of stirring as a sequence of independent events (the model analogue 
of eddies) leads to a useful representation of mixing-field microstructure. 

1. Introduction 
Characterization of the fluctuating concentration field of a diffusive species in 

turbulent flow is a problem distinct from, though related to, the problem of 
characterizing turbulent transport. The former problem is more challenging in some 
respects, since molecular mixing in turbulence is sensitive to fine-scale as well as 
large-scale motions, while turbulent transport depends mainly on large-scale 
motions. Molecular mixing measurements can therefore provide stringent tests of 
turbulence models (Dimotakis 1989 a) .  

The problem of molecular mixing in turbulence can be analysed from several 
viewpoints. A t  present the only fully systematic approach is direct numerical 
simulation, in which the NavierStokes and molecular-transport equations are 
solved with sufficient resolution to approximate the exact evolution (Eswaran & 
Pope 1988; McMurtry & Givi 1989; Kerr 1990). Other approaches, involving 
modelling assumptions that are ad hoc to some extent, can be grouped into two 
categories : computational models intended to be flexible tools, and conceptual 
models addressing specific issues. 

The first category includes the coalescence-dispersion (Curl 1963), two-particle- 
dispersion (Durbin 1980) and stirred-reactor (Baldyga & Bourne 1984a, b)  app- 
roaches. These approaches have been implemented as stand-alone models exem- 
plified, respectively, by the work of Pratt (1976), Thomson (1990) and Baldyga & 
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Bourne (1984~) .  Curl’s model has also been implemented as a subgrid-scale model 
coupled to a statistical model representing large-scale processes (Pope 1985). 

The second category includes the lognormal (Gurvich & Yaglom 1967 ; Van Atta 
1971), beta (Frisch, Sulem & Nelkin 1978; Antonia et al. 1984) and gamma (Andrews 
& Shivamoggi 1990) models, which focus on intermittency statistics and related 
aspects of the concentration field. This category also includes models that do not 
address microstructural aspects but focus on the dependence of overall mixing rates 
on Reynolds number (Re) and Schmidt number (Sc) in free shear flows (Broadwell & 
Breidenthal 1982 ; Broadwell & Mungal 1988; Dimotakis 1989b). 

Spanning these categories are the closure models. One-point closures (Shih, 
Lumley 6 Chen 1990) are applicable to various flows of interest but address a limited 
number of measurable quantities, while two-point closures (Lesieur 1987) address a 
variety of phenomena but are tractable only for the simplest flow configurations. 

This partial catalogue indicates the variety of approaches that have proved useful 
in addressing various aspects of molecular mixing in turbulent flow. The modelling 
approach adopted here is motivated by the desirability of preserving the mechanistic 
distinction between the two processes, fluid motion and molecular diffusion, that 
jointly govern turbulent mixing (Leslie 1973). Namely, fluid motion rearranges the 
spatial locations of fluid elements without changing species concentrations within 
those elements, while molecular diffusion causes the exchange of species between 
neighbouring fluid elements. This author has introduced the linear-eddy modelling 
approach (Kerstein 1986, 1988, 1989, 1990, 1991a, b )  as a means of capturing this 
mechanistic distinction in a formulation that incorporates relevant properties of 
turbulent transport. 

It is instructive to note first how other modelling approaches typically treat 
molecular mixing. In  formulations with explicit spatial structure, fluid elements that 
are sufficiently close to  each other based on a fluid-mechanical criterion are 
molecularly mixed either instantaneously, or at a rate that  may be based on a fluid- 
mechanical timescale. The appropriate lengthscale for many problems is the 
Kolmogorov scale 1, marking the transition from the inertia-dominated to the 
viscous-dominated range of lengthscales. This lengthscale is appropriate because it 
marks a transition from an algebraic to an exponential rate of lengthscale 
compression (Batchelor 1959). The accelerated compression below 1, causes 
molecular mixing to be effectively instantaneous for many purposes. I n  formulations 
that cannot resolve 1, affordably, a coarser proximity criterion is adopted and 
molecular mixing is typically implemented at a finite rate representing the time 
required to reduce the characteristic lengthscale to 1,. Though adequate for many 
purposes, such an approach omits mixing phenomena that may affect transient 
evolution, concentration-field microstructure, and the dependence of mixing 
properties on Sc. 

A more sophisticated approach, the Lagrangian-history direct-interaction ap- 
proximation, captures key spectral properties of the scalar mixing field in the 
principal Sc regimes (Kraichnan 1968 ; Leslie 1973), but the computational cost of 
this non-Markovian two-point closure limits its applicability. The success of this 
approach indicates the benefits of characterizing the ensemble of fluid-element time- 
histories in a manner that preserves the mechanistic distinction between molecular 
and convective effects. The two-particle-dispersion approach achieves a more 
economical, Markovian formulation by statistically characterizing the time-histories 
of the relative motions of fluid elements and of molecules within fluid elements. 
Though successful in many respects (Sawford & Hunt 1986; Thomson 1990), this 
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approach does not fully reflect the mechanistic distinction between molecular and 
convective processes. This limitation impacts the treatment of Sc effects, as discussed 
elsewhere (Kerstein 1988). 

These considerations highlight the modelling challenge, namely to achieve a 
reduced description of turbulent mixing that is economical (in particular, Markovian) 
and that involves physically sound representations of molecular diffusion as well as 
fluid motion. To achieve the latter objective, all relevant lengthscales of the 
concentration field are resolved in the present formulation, allowing direct 
implementation of molecular diffusion. Economical implementation is achieved by 
formulating the model in one spatial dimension. The key to the present approach is 
the one-dimensional (‘ linear-eddy ’) representation of fluid motion that is adopted. 
This aspect is discussed in detail in $2. 

In addition to the aforementioned conceptual advantages of capturing time- 
history effects, the present approach allows the extraction of a wide variety of 
mixing-field statistics in a manner analogous to experimental data reduction. Thus, 
a formulation is obtained that is broader in scope than previous models, addressing 
mixing-field intermittency and related higher-order effects as well as spectral 
scalings. Related formulations based on the linear-eddy approach have been 
generalized to accommodate transient and spatially varying turbulent flow-fields, 
multiple species, and variable-density reacting flows with finite-rate chemistry 
(Kerstein 1988, 1989, 1990, 1991a). 

The present concern is the microstructure of incompressible turbulent mixing 
fields with passive, diffusive scalar contaminants, as reflected by the probability 
density function (p.d.f.) and the power spectrum of the scalar and its dissipation rate, 
by higher-order fluctuation statistics such as structure functions and generalized 
dimensions, and by the stochastic geometry of scalar interfaces. Scaling properties of 
these quantities are independent of empirical coefficients relating model parameters 
to physical quantities, so comparison of computed and measured scaling exponents 
provides an unambiguous test of the model. 

The paper is organized as follows. First, the model formulation is presented and 
physical implications are discussed. Next, properties of computed p.d.f.s are 
examined. This is followed by comparisons of computed and measured spectral 
properties, higher-order statistics, and related quantities. Finally, the conceptual 
and practical implications of the results are assessed. 

2. Model formulation 
The foregoing considerations motivate the formulation of the model in terms of 

two concurrent processes representing the respective influences of molecular diffusion 
and fluid motion. The model is implemented on a one-dimensional spatial domain 
denoted as the interval 0 < x < X. The concentration field c(z, t )  evolves from a 
specified initial condition c(x, 0) according to Fick’s law, 

where D ,  is the molecular diffusivity. This deterministic evolution, representing 
molecular diffusion, is punctuated by instantaneous ‘rearrangement events ’, which 
may be viewed as representing the effect of individual eddies on the concentration 
field. Each event is a measure-preserving map of a spatial segment of the 
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FIGURE 1. Alternative maps representing the effect of an individual eddy. (a) Scalar field c(x, t) prior 
to map. In this example, c is linear in the spatial coordinate x. (b) Scalar field after applying the 
triplet map to the segment denoted by ticks. (c) Scalar field after applying the quintuplet map to 
the original scalar field. 

concentration field onto itself. The measure-preserving property assures that the 
species concentration c within any notional ‘fluid element ’ (adopting Lagrangian 
terminology) is unaffected by the event. Three random variables govern each event : 
the epoch and location of the event, and the size of the affected segment. The model 
formulation is completed by specifying the distributions of these random variables, 
the mapping rule, and the initial and boundary conditions. 

Before proceeding, the motivation for representing fluid motion as a sequence of 
instantaneous events rather than a continuous process is noted. In  one dimension, an 
incompressible fluid can obey the continuity equation only in the trivial case of 
spatially constant velocity a t  each instant. (Models that compute the time evolution 
of ensemble statistics rather than individual realizations can circumvent the issue of 
continuity within a realization.) To introduce non-trivial fluid motions, spatial non- 
locality must be allowed. A spatially non-local but temporally continuous process 
might involve, e.g. a piecewise constant velocity field with non-local fluid 
displacements from points of negative velocity discontinuity to points of positive 
discontinuity. Such a process would introduce discontinuities into concentration 
fields that are continuous initially. This artifact might be acceptable for some 
purposes (previous linear-eddy formulations were subject to such an artifact), but it 
can be avoided in the framework of a temporally discontinuous process. 

The mapping rule adopted here is the ‘triplet map’ (Kerstein 1991a, b ) ,  whose 
effect on the scalar field C ( X )  = x is illustrated in figure 1. The scalar field within the 
chosen segment is compressed (as by photographic reduction) by a factor of three, 
thus tripling the scalar gradient throughout the segment. The original scalar field 
within the segment is then replaced by three adjacent copies of this compressed field, 
with the middle copy mirror-inverted. Formally, application of this map to the 
segment [x, ,  x,, + I ]  a t  time to transforms c (x ,  to) to 2(x, t o )  according to 

c(-33z+4xo+2Z,t,) X , + f Z  < x Q X,+%Z 1 c(3x-2x0-22 , t , )  x,+gz Q x Q x,+z 
2(x , t , )  = 

1 c (x , t , )  otherwise. 

This map does not cause any spurious discontinuities of c ( x , t )  (though i t  does 
introduce discontinuities of ac/ax, whose impact is considered in 54.1). The map 
causes a multiplicative increase of the scalar gradient throughout the size-Z segment, 
analogous to the effect of compressive strain in turbulent flow. The multiplicative 
random process induced by a sequence of such events is the basis of the scaling 
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FIQIJRE 2. Schematic illustration of the effect of a single, clockwise eddy on a two-dimensional 
scalar field that initially has a uniform concentration gradient. (a) Initial concentration isopleths 
(vertical lines) and concentration profile c(z) (heavy line) parallel to the initial concentration 
gradient. ( b )  Concentration isopleths and concentration profile at a later time. 

properties of the model. In this regard, the model is analogous to a two-dimensional 
picture of turbulent mixing based on the generalized baker’s map (Ott &, Antonsen 
1989). 

Computed results are based on the triplet map except where stated otherwise. An 
alternative map, the ‘ quintuplet map ’ illustrated in figure 1 (c), is employed in some 
computations to determine the sensitivity of the results to the choice of map. This 
map, an obvious extension of the triplet map, is the second in a series of higher ‘n- 
tuplets ’ that can be defined. 

The intuitive rationale for adopting the triplet map is illustrated in figure 2. 
Consider the effect of a single, clockwise eddy on a two-dimensional concentration 
field that initially (figure 2a)  has a uniform gradient. The eddy distorts the 
concentration isopleths, which are linear initially, as indicated in figure 2 ( b ) .  Taking 
the 2-direction to be parallel to the initial gradient, the linear initial profile evolves 
to a form qualitatively resembling the profile obtained by applying the triplet map 
to the linear profile (figure 1 b). 

This comparison motivates the analogy between the triplet map and the action of 
a single eddy, providing a physical basis for specifying the random processes 
governing the sequence of rearrangement events. Another analogy, between the 
transport induced by the rearrangement process and the turbulent diffusivity , is also 
required. These analogies have two implications with regard to the model. First, a 
random sequence of rearrangement events induces a random walk of a fluid element, 
with an associated diffusivity that is interpreted as the turbulent diffusivity D,. This 
interpretation leads to a relationship between an event-frequency parameter and the 
physical quantity D,, as demonstrated shortly. Secondly, an aspect of turbulent 
flow-field microstructure is incorporated into the model by requiring that 
rearrangement events involving segments of size 1 or less obey the transport scaling 
governing eddies in that size range. Namely, the Kolmogorov cascade picture of 
inertial-range turbulent transport requires that the diffusivity induced by eddies of 
size 1 or less be proportional to lp, where p = +  (Tennekes & Lumley 1972). 
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Furthermore, the eddy sizes are confined to the range L ,  < 1 < L, where L and L,  
are the model analogues of the integral and Kolmogorov lengthscales of the 
turbulent flow. These considerations suffice to complete the formulation of the model 
in terms of the quantities DM, D,, p, L and L,. (The symbol p is retained because 
values other than 2 are considered. Computed results are based on p = 2 unless stated 
otherwise.) 

In  the present formulation, rearrangement events are statistically independent. 
For each event, the parameter xo in ( 2 )  determining the spatial location of the event 
based on ( 2 )  is selected according to  the uniform distribution over the spatial domain 
[O,X].  (The map extends beyond X if xo > X-1. This situation is handled by means 
of a jump-periodic boundary condition, discussed shortly.) Epochs to are governed by 
a Poisson process with rate AX, where the event-frequency parameter h has units 
(length x time)-’. Segment sizes 1 are selected according to a p.d.f. f(1). 

h andf(1) are expressed in terms of the five input quantities as follows. The fluid- 
element diffusivity, derived in terms of h andf(1) in the Appendix, is set equal to D,, 
giving 

(3) 

The diffusivity attributable to segments of size 1 or less is obtained by replacing the 
upper limit of integration by 1. In the inertial range L ,  Q 1 Q L,  that diffusivity scales 
as 1P provided that f(1) scales as P4. Therefore the segment-size p.d.f. is taken to be 

D,  = &A lom 13f(l) dZ. 

fez) = L[(L/L,)3-P- 3-p 1 3 E  (“)”” ’ (4) 

confined to the range L,  < 1 < L ,  where the prefactor follows from the normalization 
condition. Substitution of (4) into (3) yields the expression 

27 p D, (L/LK)3-P- 1 A = -  -- 
2 3-p L3 l-(L, /L)P . (5 )  

It is convenient to scale length and time with respect to L and the ‘large-eddy 
turnover time’ TL = L2/D,. It is evident from ( l ) ,  (4) and ( 5 )  that scaled quantities 
depend only on p, LIL, and D,/D,. In comparisons to measurements, p is fixed at 
2, although other values are considered for the purpose of sensitivity analysis. 
Dependences on the other two quantities are parameterized by Re, = (L/L,)i and 
Sc, = (D,/DM)/Re,, the nominal Reynolds and Schmidt numbers of the simulation. 
The former definition reflects the functional dependence of the Reynolds number on 
LIL, that is prescribed by the Kolmogorov inertial-range cascade (Tennekes & 
Lumley 1972). The latter definition reflects the identification of the ratio D,/D, with 
the physical quantity ReSclPr,, where the Reynolds number Re is the ratio v T / v  of 
turbulent to molecular viscosity, v /D ,  is the Schmidt number Sc (or the Prandtl 
number Pr when referring specifically to the temperature field), and the turbulent 
Prandtl number Pr, = vT/D, is an empirical quantity (Hinze 1975). 

The definitions of Re, and Sc, are motivated by a kinematical analogy between the 
model and turbulent mixing. The model involves neither a flow field nor viscosity per 
se and yet it reproduces many of the effects usually associated with those dynamical 
aspects. 

In $4.2, Re, and Sc, are expressed in terms of the physical quantities Re and Sc  
based on empirical coefficients of proportionality. Many properties considered here 
are not sensitive to Re or Sc (provided that an appropriate asymptotic limit with 
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respect to these parameters is approached) and therefore do not depend on the 
empirical inputs determining the coefficients of proportionality. 

With the model thus specified (apart from initial and boundary conditions, 
discussed shortly), the analogy between rearrangement events and eddies can be 
developed in more detail. Inertial-range transport properties are ‘built into ’ the 
model through (4) and (5 ) .  Key mixing properties follow from those equations and 
from the definition of the triplet map. 

The main features of the triplet map are the tripling of the scalar gradient within 
each fluid element of the chosen segment, and the mapping of each compressed 
element onto three daughter images. A stationary random sequence of such events 
induces two effects analogous to the key properties of turbulent mixing. First, scalar 
gradients increase exponentially with an e-folding time of order (&J1. For Re, % 
1, this is of the order of the model Kolmogorov time TK = ReitT, according to ( 5 )  and 
the definitions of Re, and TL. Secondly, each map triples the number of crossings of 
a given concentration level within a segment. These crossings correspond to 
intersections of a concentration isopleth by the segment, and each tripling represents 
a tripling of the isopleth surface associated with the segment. Thus, the 
rearrangement process induces exponential growth of isopleth area, again with an e- 
folding time of order TK. These two interrelated properties are in accordance with 
classical theory (Batchelor 1952, 1959). The manifestation of these properties along 
the computational line is evident in figure 2, which illustrates the compressive action 
of the stirring motion, accompanied by isopleth extension and distortion, and the 
consequent modification of c(x). 

Based on these observations, it is evident that the rearrangement process, in 
conjunction with molecular diffusion implemented according to (l) ,  has the potential 
to reproduce the structural properties of turbulent mixing fields. The objective of the 
present study is to determine the extent to which this potential is realized. To this 
end, a simple initial-boundary-value problem is formulated whose scalar fluctuation 
statistics relax to a homogeneous, statistically steady state, thereby avoiding 
complications such as transient evolution of the system. 

Statistically steady scalar fluctuations cannot be maintained in a closed finite 
domain because molecular diffusion dissipates scalar fluctuations and the system 
eventually relaxes to constant c. Therefore an infinite domain is considered. The 
concentration field c(x, t )  evolves in time from the initial condition c(x, 0) = G x  for 
- co < x < co, where G is an imposed scalar gradient. By symmetry, the ensemble 
average (c(x, t ) )  neither increases nor decreases from its initial value, so (c(x, t ) )  = 
G x  for all t .  Since the mean scalar gradient is thus maintained, turbulent stirring 
provides an ongoing source of scalar fluctuations to counterbalance the dissipative 
effect of molecular diffusion, and a non-trivial statistically steady state is obtained 
after a transient period. The concentration field c(x+a, t) is statistically equivalent 
to the concentration field c(x, t) + Ga, so steady-state statistical properties depend on 
neither x nor t. In particular, the mean-subtracted concentration field c’(x, t )  = c(x, 
t )  - G x  is spatially homogeneous. With one exception discussed in $6, statistics are 
computed with respect to c ’ (x , t ) .  

This configuration cannot be realized literally in a laboratory experiment, but it 
is emulated in laboratory or geophysical flows in which a uniform transverse gradient 
of mean temperature (or other diffusive contaminant) is established over a distance 
much larger than the turbulence integral scale. Between the scalar relaxation time 
(of the order of the large-eddy turnover time) and the time for turbulent transport 
of fluid across the constant-gradient zone, the scalar fluctuation field in such a flow 
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is spatially homogeneous and statistically steady to a good approximation, provided 
that the turbulent stirring field is spatially homogeneous and statistically steady. 
The latter proviso is difficult to satisfy in practice. Nevertheless, many scaling 
predictions based on homogeneous, statistically steady turbulence are confirmed 
experimentally over a wide range of flow conditions. 

Numerical simulations, like laboratory experiments, are limited to finite domains. 
However, simulations can be implemented on a bounded domain, here chosen to be 
0 < z < X, in a manner that is equivalent to the unbounded formulation with 
constant mean scalar gradient G by employing a jump-periodic boundary condition. 
Namely, the scalar value c ( z ,  t )  a t  given z in the range [O,X] determines the scalar 
value at z+kX according to c(x+kX,t)  = c ( x ,  t ) + k X G ,  where k is any integer 
(positive or negative). 

Though the present study is limited to  this simple configuration, the modelling 
approach allows the study of more general transient and spatially inhomogeneous 
configurations as well. More general formulations are obtained by choosing 
alternative initial and boundary conditions, by allowing L and Re, to vary with x and 
t ,  and by supplementing the two processes of molecular diffusion and spatial 
rearrangement by additional processes, which may be deterministic or stochastic. 
Examples of such applications appear elsewhere (Kerstein 1989, 1990, 1991 a, c).  

Thus far, the model has been formulated with respect to continuous variables x 
and t .  On a discretized computational domain, finite-difference numerical solution of 
(1) is straightforward. The discrete version of the triplet map is defined so as to  
satisfy species conservation exactly in the discrete implementation. The discrete 
triplet map is defined for segments whose size is an integer multiple of three 
computational cells. The discrete map, applied to  a segment consisting of 3k cells 
sequentially labelled 1 ,2 ,  . . . ,3k, yields the sequence 1,4,  7,  . . . , 3k - 8, 3k - 5, 3k - 2 ,  
3k-1, 3k-4, 3 k - 7 ,  ..., 8 , 5 , 2 ,  3, 6 ,9 ,  ..., 3k-6, 3k-3, 3k. For example, asegment 
consisting of six cells sequentially labelled 1, 2 ,  3, 4 ,  5, 6 is rearranged to obtain 1 ,  
4, 5, 2, 3, 6. 

Quantitative predictions are obtained from the model by exact analysis, by scaling 
arguments, and by numerical implementation as a Monte Carlo simulation. The 
results presented here are based primarily on numerical simulation, supplemented by 
exact analysis or scaling arguments where possible. 

Computed results may differ from exact properties of the model due to  finite- 
sample effects (i.e. statistical precision), numerical roundoff error, and spatial and 
temporal discretization. In  $5, the impact of these errors on the higher-order 
statistics most sensitive to  such errors is assessed. 

Each computed realization evolves from the initial condition c ( z ,  0) = x/L on the 
finite domain [0, L ] ,  with the jump-periodic boundary condition applied. (Scaled 
quantities are not affected by the assignment G = 1/L.  The size of the computational 
domain is chosen to allow investigation of microstructure at lengthscales below the 
integral scale L. I n  studies addressing large-scale entrainment phenomena, domains 
larger than L are employed.) Each realization relaxes to  a statistically steady state 
after a transient period whose duration typically ranges from 2TL to 5T,. (Recall that 
TL = L2/D,.) Subsequently, simulation statistics are gathered over a typical time 
interval lOT,, adjusted upward or downward depending on the precision desired in 
individual cases. Only one realization is computed per case (defined as the complete 
set of inputs, including cell size and timestep, needed to specify a computation), 
except for one random-number-seed sensitivity test. One realization suffices because 
time averages correspond to ensemble averages in the steady state. (In studies of 
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transient, spatially inhomogeneous configurations, multiple realizations are generally 
needed in order to obtain temporally and spatially resolved statistical properties.) 
For all cases reported here, the spatial domain was discretized into 8192 cells. 

Values of Res for the computations were chosen to be as high as possible consistent 
with spatial and temporal resolution requirements and computational affordability. 
(The typical run time for a computed realization was one hour on a Cray XMP-24. 
Computations were run-time-limited rather than memory-limited.) The large-Res 
limit is the regime of greatest interest with respect to fundamental scaling properties 
as well as practical applications. Three values of Sc, were considered, namely 0.7 
(corresponding to Sc for ambient air), 600 (corresponding to Sc for water) and 0.018 
(corresponding to P r  for mercury). These values are related to the corresponding Sc 
or Pr  values by a non-unity coefficient of proportionality, which is determined a 
posteriori by comparing computed results to measurements (see $4.2). These values 
were chosen because they roughly correspond to cases of physical interest, and 
because they encompass the principal spectral regimes of molecular mixing in 
turbulence, discussed in $4.1. 

Although the model ostensibly simulates mixing-field evolution along a straight 
line, it is more accurate for some purposes to regard the computational domain as a 
time-varying space curve locally aligned with the concentration gradient. This 
interpretation reflects the fact that all rearrangement events involve compression, 
and that concentration gradients in turbulent flows tend to align locally with the 
most compressive strain direction (Ashurst et al. 1987). 

One consequence is that the x-derivative of the simulated concentration field 
should be interpreted as the local concentration gradient rather than its projection 
onto a fixed laboratory coordinate. Thus, the model analogue of the scalar 
dissipation rate ~ D , ( V C ’ ) ~  is 2D,(acf/ax)2. Another consequence is that the power 
spectrum of the simulated concentration field is the model analogue of the three- 
dimensional rather than the one-dimensional scalar spectrum. Simulated spectra are 
therefore compared to measured one-dimensional spectra that have been transformed 
into three-dimensional spectra using a relation based on local isotropy (Hinze 1975). 
(The mathematical basis of these assertions concerning the scalar dissipation rate 
and the power spectrum is presented in the Appendix.) 

Many properties of interest depend primarily on the statistical weight and spatial 
distribution of regions of high scalar gradient. These properties tend to be insensitive 
to the distinction between averaging over the aforementioned space curves and 
averaging over a fixed coordinate. However, properties that depend on the statistics 
of low-gradient regions are sensitive to this distinction for the following reason. On 
a space curve locally aligned with the concentration gradient, every point of zero 
concentration derivative along the arc is a zero-gradient point of the concentration 
field. In  contrast, a fixed line has zero probability of intersecting a zero-gradient 
point of the concentration field (Gibson 1968a). Averages over the space curves are, 
in effect, conditional samples that give disproportionate weight to low-gradient 
regions. This bias is reflected in model results for the p.d.f. of scalar dissipation ($3) 
and for certain intermittency statistics ($5 ) .  

3. Distribution of the scalar and the scalar dissipation rate 
Typical computed p.d.f.s of the mean-subtracted concentration cf and of quantities 

that depend on & = L2(ac’/az)2 are plotted in figure 3. (& is a non-dimensional form 
of the scalar dissipation rate.) Centred differencing is used to compute x-derivatives ; 
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FIGURE 3. Probability density function of (a) the mean-subtracpd concentration c’(z, t )  = 
c(z , t ) - ( z /L) ,  ( b )  the normalized scalar gradient g/ (g2$ ,  where g = &I = Llac’/azl, and (c) log,,Q, 
computed for Re, = lo4 and Sc, = 0.7. 
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first differencing is found to give indistinguishable results for this and all other 
statistics of the dissipation field. 

Computed concentration p.d.f.s are symmetric about c' = 0, with flatness factors 
about 20 % above the Gaussian value for all cases considered. The tails of the p.d.f.s 
are found to be Gaussian. The latter result is an artifact of the configuration 
simulated here, in which a jump-periodic boundary condition is imposed on a domain 
of size L .  Computations have also been performed on domains much larger than L .  
These computations, performed for Re, of order unity, yield p.d.f.s with exponential 
tails. This result is consistent with a recent (Pumir, Shraiman & Siggia 1991) 
theoretical analysis that predicts exponential tails for the p.d.f. of a stirred, diffusive 
scalar subject to a constant mean gradient, irrespective of the Reynolds number of 
the stirring process. 

P.d.f.s of quantities that depend on Q are plotted in figure 3 (b, c). The formats of 
the plots facilitate interpretation of the large-& and small-Q behaviours, respectively. 
The format of figure 3(b)  is often used to examine the extreme behaviour of spatial 
differences or derivatives of fluctuating quantities in turbulence (Antonia et al. 1984 ; 
Kraichnan 1990). That figure is a semilog plot of the p.d.f. of g = Qi, the scaled 
derivative of c', for a case in which Sc, = 0.7. 

Some features of the computed p.d.f. can be interpreted by analysing the case 
Sc, = 00. In this case a steady state is never reached owing to the unabated increase 
of scalar gradients. Nevertheless, analysis is greatly simplified by the fact that the 
scalar gradient g ( t )  in a given fluid element at  time t is 3jg(O), where j is the number 
of rearrangement events that compress the fluid element during [0, t ] .  

Since events are statistically independent, j is governed by the Poisson probability 
function (Wilks 1962) Prob [ j  = J ]  = mJ ePm/J !, where m is the mean value o f j  and 
can be expressed in terms of model parameters as m = Rt,  where the mean rate of 
events affecting a given fluid element is R = hSZf(1)dl. The leading-order g 
dependence at large g is governed by the factorial term in the probability function, 
which does not depend on m. Applying Stirling's approximation and transforming to 
obtain the p.d.f. of g ( t ) ,  the large-g tail is found to fall off as [g/g(0)]-1"1"[g'8(0)1/1"3, i.e., 
faster than any power of g but slower than exponentially. 

There is no assurance that this result for the case Scs = 00 is applicable to the 
steady-state regime obtained for finite Sc,. A quantitative test of this subtle 
functional dependence on g is not computationally affordable, but the inferred 
slower-than-exponential fall-off can be tested. Finite-Sc, computations confirm this 
feature, as illustrated by the p.d.f. plotted in figure 3(b) .  The shape of the p.d.f. 
roughly corresponds to the shape obtained by Antonia et al. (1984) from 
measurements of a related quantity, the difference between temperature values 
measured at  two neighbouring points in a turbulent gas jet. 

Slow fall-off is a general property of p.d.f.s of velocity derivatives as well as scalar 
derivatives in turbulence (Kraichnan 1990). In  this regard, the present analysis 
highlights the causative role of compressive strain, effectively acting as a 
multiplicative random process operating on spatial derivatives. This aspect has been 
recognized in previous work (Gurvich & Yaglom 1967). The precise functional form 
of the tails of measured p.d.f.s is sensitive to mechanistic details that are not fully 
understood (Monin & Yaglom 1975; Andrews et al. 1989). 

In figure 3(c ) ,  the same p.d.f. is plotted in the format used by Dowling (1991) to 
highlight the behaviour at low values of the scalar derivative. For derivatives along 
a fixed line, Dowling notes that the principal contribution to the p.d.f. in this range 
is from the neighbourhoods of turning points of the scalar. Geometrical considerations 
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yield a Q-i divergence of the p.d.f. of Q in the limit Q + 0. In the format of figure 3 ( c ) ,  
this behaviour manifests itself as convergence to slope + for small Q .  

This behaviour is an artifact of the model property that zero-gradient points occur 
in the computations, but do not occur along a fixed line in a three-dimensional 
scalar field. Therefore the model p.d.f. for small Q is akin to measured p.d.f.s of the 
squared scalar derivative in a fixed direction. This interpretation does not apply for 
all Q ;  a more precise interpretation of model statistics as averages over a time- 
varying space curve is presented at  the end of $2. Therefore the p.d.f. transformation 
(Dimotakis, Broadwell & Zukoski 1990) that relates directional derivatives along a 
fixed line to gradients of isotropic scalar fields is not applicable here. 

4. Scalar power spectra 
4.1. Spectral ranges and scalings 

As discussed in $2, simulated scalar power spectra are analogous to three-dimensional 
spectra obtained by transforming measured one-dimensional spectra. The ex- 
perimental results considered here were reported as three-dimensional spectra and 
therefore can be compared directly to simulated spectra. 

Scalar spectral ranges are classified according to the fluid-mechanical regime 
(inertial above l,, viscous below l,, where 1 ,  is the Kolmogorov scale) and the 
presence or absence of molecular influences (Lesieur 1987). Molecular diffusion is 
effective in counteracting strain-induced growth of scalar gradients at lengthscales 1 
below the Batchelor scale 1, = Sc-il, for Sc 2 1, and below the Obukhov-Corrsin 
scale 1,  = Sc-fl, for Sc < 1. (The qualitative differences between mixing mechanisms 
above and below Sc = 1 are elaborated shortly.) 

The scales I , ,  1, and 1, demarcate the scalar spectral ranges for various Sc. The 
model analogues L,  and L, of 1, and I ,  are obtained by substituting Scs for Sc and 
L,  for I , ,  where L ,  was defined in $2. The model analogues of the scalar spectral 
ranges are investigated by scaling analysis and by examination of spectra computed 
from simulated realizations. 

Estimates of spectral and other scaling exponents are obtained from dimensional 
considerations like those typically applied to molecular mixing in turbulence 
(Tennekes & Lumley 1972; Lesieur 1987). The estimates are subject to the usual 
caveat that they omit any intermittency corrections reflecting the fluctuating nature 
of the concentration field. Intermittency effects are identified by comparing the 
estimates to exponents obtained from simulated realizations, and by examining 
other quantities that characterize the intermittency (see $5) .  

Power spectra E(k)  of simulated realizations are computed according to 
00 

E(k)  = R-’ [ (c ’ (0 )  c ’ ( z ) )  exp ( -ikz) dz. (6) 
J-CO 

It is shown in the Appendix that this definition is the model analogue of the usual 
definition of the three-dimensional power spectrum (Hinze 1975). The wavelength 1 
associated with the wavenumber k is given by k = 2x11. It is convenient to perform 
the scaling analyses in terms of 1 and re-express the final results in terms of k. 
According to (6), E scales as lSf, where S, is the characteristic scalar fluctuation 
amplitude for wavelengths of order 1 .  (For the purpose of scaling analysis, 6, is 
treated as a dimensional quantity although c’ is often taken to be a normalized 
quantity in practice.) Spectral scalings are obtained by estimating the 1 dependence 
of S, in the various regimes. 
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First, it  is shown that the model parameters L,, L ,  and L, have meaning 
analogous to their physical counterparts. I, is the lengthscale below which molecular 
viscosity damps inertial energy transfer to smaller scales. The kinematical 
consequence of this cutoff has been incorporated into the model by adopting a 
lower cutoff L ,  on the range of segment sizes. In $2, this cutoff was parameterized 
in terms of Res = (L/L,)i, motivated by the analogous relation between the physical 
quantities Re and LIZK. The validity of this analogy will be demonstrated by showing 
that the Res scalings of the model are consistent with the Re scalings governing 
turbulent mixing. 

The lengthscale at which molecular-diffusive smoothing of the scalar field 
counteracts strain-induced wrinkling is estimated by equating the characteristic 
timescales of the respective processes (Batchelor 1959). The characteristic molecular- 
diffusion timescale corresponding to lengthscale 1 is 12/DM. The usual estimate for the 
characteristic fluid-mechanical timescale t ,  in this context is l / v l ,  where vl is a typical 
velocity fluctuation over a distance 1 .  ( t l  is the 'turnover time ' of a size-1 eddy.) The 
present formulation does not involve a velocity field per se. The model analogue of 
t ,  is the time 

7, - [" fi Z'f(Z') d t ] '  (7) 

between successive rearrangement events of size 1 or larger that include a given point. 
(The term in square brackets is a weighted sum over the characteristic rate for size- 
1' events. Note that the dominant contribution to the rate is from I' in the vicinity 
of 1, so 7l is an appropriate characteristic time for size-1 eddies.) Based on (4) and (5), 
this gives 

for L,  < 14 L.  For 1 < L,, (7) gives rl - (LK/L)2-PTL, independent of 1 .  
For Scs > 1, the balance condition 7, = 12/DM is satisfied at a lengthscale below L,. 

Specializing to p = 4, the foregoing results and the definitions of TL, Res and Sc, yield 
a balance lengthscale of order L, = Sc$L,. For Sc, < 1, the balance condition is 
satisfied a t  a lengthscale above L,, and is of order L, = SCS~L,. Thus, the formal 
analogy between physical lengthscales and the corresponding model parameters is 
consistent with the physical criteria determining those lengthscales. In particular, 
these results show that the formal analogy between Sc and Sc,, where the latter is 
defined as (DT/DM)/Res,  is physically sound. It is noteworthy that the model has a 
meaningful Schmidt number based on a kinematical analogy, despite the absence of 
molecular viscosity per se in the model. 

Having thus derived the balance lengthscales demarcating the various scalar 
spectral ranges of the model, the functional forms of the spectrum in those ranges are 
now investigated. 

In the inertial-convective range max (L,, L,) < 1 < L ,  molecular diffusion has 
negligible effect on scalar fluctuations, so the generation and spectral transfer of 
those fluctuations are governed by the rearrangement process. Fluctuations are 
generated by each displacement of a fluid element away from the location where its 
concentration is equal to the local mean value. By virtue of the imposed condition 
that the diffusivity induced by events of segment-size 1 or less scale as l p ,  where p = 
Q, fluctuations are generated primarily by large4 events, as in real flows. It is assumed 
that spectral transfer of fluctuation intensity in the inertial-convective range is 
characterized by a local (in wavenumber) cascade from large to small 1 that conserves 
the scalar dissipation. (This is the usual scalar analogue of the Kolmogorov cascade 

71 - (l/L)2-PTL (8) 
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FIQURE 4. Scalar power spectra E,, plotted in a format convenient for identifying scalings, 
obtained from simulated realizations for p = $. The subscript B indicates that the model analogue 
of Batchelor scaling is fmpioyed. Namely, the power spectrum is normalized by dividing by 
WegiL,, where L ,  = Sc;zRe;xL is the model Batchelor scale. Computed results: A, Re, = lo4 and 
Sc, = 0.7 ; 0, Re, = 10' and Sc, = 600 ; 0,  Re, = lo4 and Sc, = 0.018. Also plotted for comparison 
to scaling predictions are straight line segments of slope 4 (inertial-convective range) and, for 
Sc, = 600, a line segment of slope 1 (viscous-convective range). The dashed curve, obtained by 
direct numerical simulation for Sc = 0.5 (Kerr 1990), is plotted in model coordinates based on 
empirical conversions discussed in the text. 

of energy dissipation.) In other words, the spectral transfer rate of the squared 
fluctuation a t  I, which scales as 8;/r1 based on dimensional considerations, is assumed 
to be independent of 1 in the inertial-convective range, i.e. 8; - rl .  Substituting (8) for 
rl ,  the result E - 18; - Zrl - k - p  - k p P 3  is obtained. In  particular, E - k-9 for p = 5 3' 

The assumptions underlying this analysis correspond to the usual (Lesieur 1987) 
physical picture of the inertial-convective range. The analogy between rear- 
rangement events and eddies is the key to  carrying over that physical picture to a 
modelling approach that does not involve a velocity field. 

The -g power law governing the scalar spectrum has been confirmed by numerous 
measurements (Monin & Yaglom 1975). This experimental confirmation does not 
assure the applicability of the scaling analysis to the present model. To test the 
scaling analysis, power-law fits to the inertial-convective ranges of simulated scalar 
power spectra were performed for several p values. Power-law scaling was confirmed, 
as exemplified by the spectrum for Sc, = 0.7 plotted in figure 4, corresponding to 
p = $. (The inertial-convective ranges shown in that figure for other Sc, values are 
not well resolved. Various features of figure 4 are discussed shortly.) Deviations of 
computed exponents from the scaling prediction p - 3  are shown in figure 5.  
Although good agreement with the scaling prediction is obtained at p =+, 
statistically significant deviations occur a t  other p values, with a trend that is 
roughly linear in p .  These deviations presumably reflect intermittency effects 
omitted from the scaling analysis. 

Since the value p = Q has no special mathematical significance in the framework of 
the model, the vanishing of the deviation at or very near p = is apparently 
fortuitous. Analogous considerations apply to real flows, i.e. theoretical con- 
siderations do not rule out deviation from the scaling prediction (Kraichnan 1968), 
but such deviation is not observed experimentally. 

For Sc, $ 1, there is an additional spectral scaling in the range 1 < L,. For 1 @ L,, 
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FIQURE 5. Deviation of the computed power-law exponent of the scalar spectrum in the 
inertial-convective range from the scaling prediction p - 3, where p is the eddy-diffusivity scaling 
parameter. ( p  = 4 corresponds to the Kolmogorov cascade.) Computed exponents are obtained 
from simulations at Re, = lo4 and Sc, = 0.7. Error bars (roughly the same size as the symbols) are 
based on linear fits to log-log plots of computed spectra. 

the segment sizes for all rearrangement events are so large relative to I that the effect 
of a rearrangement on a size-l fluid element may be approximated as a spatially 
uniform compression. (This approximation is invalid for fluid elements of size 1 > L, 
because entire segments may be contained within fluid elements of size larger than 
L K . )  Fluid elements of size 14 L ,  therefore experience exponential growth of scalar 
gradients, as discussed in $2, with a characteristic growth rate that is independent 
of 1. Kraichnan (1968) has noted that E(k)  - k-' under these circumstances, provided 
that other effects such as molecular diffusion are negligible. Since molecular diffusion 
becomes influential for 1 < L,, this spectral scaling is limited to the range L ,  < 1 < 

The k-' spectrum is a general property of scalar fields, in the model or in real flows, 
at lengthscales much smaller than those a t  which the compressive strain is applied. 
Accordingly, this spectral scaling is obtained experimentally (Monin & Yaglom 1975) 
and in model computations. A scalar spectrum computed from a simulated 
realization at Re, = 100 and Sc, = 600 is shown in figure 4. As k increases, the 
spectrum transitions from the inertial-convective regime (which is poorly resolved 
due to the low value of Re,) to the k-' scaling, departing from this scaling at high 
wavenumbers. 

The functional form of the high-wavenumber molecular-diffusive cutoff is not 
firmly established. An analysis that neglects fluctuation effects was performed by 
Batchelor (1959). He derived the k-' 'viscous-convective ' spectral scaling, with an 
additional multiplicative factor of the form exp ( - D ,  k2/lyl), where l/lyl is a 
characteristic fluid-mechanical timescale of order t ,  = l i / v .  According to his 
analysis, the exponential cutoff dominates the spectral scaling in the ' visc- 
ous-diffusive ' range 1 4 1,. The effect of fluctuations on the functional form of the 
cutoff is difficult to analyse systematically. Simplifying assumptions (Kraichnan 
1968) yield a falloff of the form exp ( - k ) ,  while direct numerical simulation (Kerr 
1990) indicates a somewhat slower falloff. 

The high-wavenumber properties of the model are impacted by an artifact of the 
triplet map, namely the discontinuous derivatives of c(z, t )  that are introduced. The 
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spectral manifestation of a discontinuous derivative is a kP4 high-wavenumber falloff 
of the power spectrum. This falloff must be weighted by an amplitude factor 
reflecting the number density of points of discontinuous derivative in the 
computational domain. Strictly speaking, their number density is zero because 
molecular diffusion excises the singularities immediately upon occurrence. However, 
for given wavenumber k, a time interval of order (k2D,)-l is required for molecular 
diffusion effectively to dissipate the spectral contribution of the singularity a t  that 
wavenumber. The measure of the effectively singular region for given k is 
proportional to  l /k  times this time interval, yielding a k-3 scaling of the amplitude 
factor, and thus a high-wavenumber scalar power spectrum of the form E ( k )  - k+.  

Computed power spectra such as those in figure 4 roll off gradually in the 
dissipative range, approaching but not reaching the kP7 limiting behaviour within the 
wavenumber range available on the discretized computational domain. Computed 
spectra, such as that for Sc, = 600 shown in figure 4, exhibit more gradual falloff 
than spectra obtained by direct numerical simulation (Kerr 1990). (The comparison 
to Kerr's result is discussed further in $4.2.) This discrepancy may reflect the high- 
wavenumber spectral input due to the discontinuous derivatives introduced by the 
triplet map. 

For Sc, < 1,  molecular diffusion becomes influential a t  a lengthscale L, that 
exceeds L,. For 1 < L,, the time tmo,(l)  - 12/D, for molecular diffusion to dissipate 
a size4 undulation of the scalar field is less than the characteristic timescale r1 
governing the generation of undulations by rearrangement events. Since undulations 
are dissipated more quickly than new undulations appear in this spectral range, they 
may be viewed as isolated perturbations of a scalar field that is otherwise featureless 
(i.e. the scalar gradient is roughly constant over a size-1 interval). An undulation 
generated by a size-1 event therefore has a typical scalar amplitude 8, - g l ,  where g 
is the typical magnitude of the scalar gradient. Based on the balance between 
generation and molecular dissipation of undulations, the fraction of the spatial 
domain that is occupied by undulations at any instant scales as tmol(Z)/rl - 6, where 
the exponent reflects the 1 dependences of the respective timescales. The power 
spectrum scaling is determined by the spatial integral of the squared scalar 
amplitude, of order 18; times this fraction, giving E(k) - k-y. 

The scalar spectrum obtained by simulation for Sc, = 0.018, shown in figure 4, is 
replotted in figure 6 in a format convenient for identification of the inertial-diffusive 
scaling. In  these figures, the value of the Batchelor-scaled wavenumber K ,  = L, k 
corresponding to the Batchelor scale is 2x and the value of K ,  corresponding to the 
Kolmogorov scale is 2xL,/LK = 27cScgi = 47. Between these nominal limits of the 
inertial-diffusive range, there is a subrange 10 < K ,  < 30 in which the computed 
spectrum is roughly consistent with the scaling prediction. (To assess the degree of 
consistency, note that K,? varies by two orders of magnitude over this subrange.) 

Theories and measurements of inertial-diffusive spectral scaling in real low-Sc 
flows are less definitive than for the other spectral regimes. Batchelor, Howells & 
Townsend (1959) predicted k-y scaling for LK < I < L,, but Gibson (19683) proposed 
an alternative k-3 scaling. The validity of the latter proposal in the more limited 
subrange L, < 1 < L, is supported by experimental and computational studies (Clay 
1973; Gibson, Ashurst & Kerstein 1988; Kerr 1990). (Those studies also provide 
evidence, albeit inconclusive, of k-f scaling for L,  < 1 < L B . )  The presumed cause of 
the k-3 scaling is the local alignment of the scalar gradient with the compressive 
strain, resulting in significant gradient amplification over an extended time period. 
Since convection is implemented as a sequence of instantaneous, statistically 
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PIIXJ~E 6. Scalar spectrum of figure 4 for Sc, = 0.018, replotted in a format that gives a plateau 
if k - s  scaling is obeyed exactly. For this Sc,, the Batchelor scale corresponds to K ,  = 2n and the 
Kolmogorov scale corresponds to K ,  = 47. 

independent events in the present formulation, such a mechanism is beyond its 
scope. 

That artifact may also account for the difference between the model inertial- 
diffusive scaling and the k-f prediction of Batchelor et al. Based on the timescale 
inequality tmo1(l) 4 T ~ ,  Batchelor et al. assume an approximate steady-state balance 
of convective strain and scalar transport. In contrast, undulations are created 
instantaneously in the present formulation, though molecular dissipation occurs 
gradually. An aspect common to both derivations is the assumption that high- 
wavenumber scalar fluctuations are generated by high-wavenumber eddies acting on 
low-wavenumber scalar variations. 

4.2. Spectral amplitudes and transitions 
In the foregoing analysis of spectral scalings, the parameters Re, and Sc, determine 
the wavenumber ranges of the various regimes, but are not involved in the 
determination of the functional form of the spectral scaling within a given range. 
Other properties may depend on these parameters, so it is useful to express Re, and 
Sc, in terms of physical quantities. This is done by comparing measured transition 
wavenumbers and the numerical prefactors of the spectral scalings to their model 
counterparts. 

To perform these comparisons, it is convenient to normalize the spectra in a 
manner analogous to Batchelor scaling. For measured spectra, Batchelor scaling is 
obtained by expressing length in terms of l,, time in terms of the Kolmogorov time 
t ,  = ( Y / E ) ~ ,  and scalar amplitude in terms of (XtK)i, where E is the mean energy 
dissipation rate a n d 2  is the mean scalar dissipation rate (Gibson 1968b). S' ince a 
measured spectrum E ( k )  has units (scalar amplitude)2 x length, the Batchelor-scaled 
spectrum EB(kB) is obtained by dividing g(k) by X t ,  I ,  and expressing wavenumber 
in terms of k ,  = I ,  k .  (The hat serves to distinguish measured spectra from spectra 
obtained from model computations.) 

Spectra expressed in model coordinates are scaled in an analogous manner, namely 

where K q  = L ,  k and the model analogue TK of the Kolmogorov time is taken to be 
TK = Re;zL2/D,. This expression for TK is analogous to the inertial-range scaling 

EBWd EWB)/(XTKLB)> (9) 
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property t ,  -Re&,. (The model analogue of the large-eddy turnover time t ,  is the 
quantity T, = L2/DT introduced in $2.) It is shown in the Appendix that the mean 
scalar dissipation rate for the model is 2DT/L2. Based on these relations and the 
relation L,  = SciiReiiL, (9 )  becomes EB(KB) = E(KB)/(2Sc;kRei:L). 

The first empirical datum that is introduced is the lengthscale 1* a t  which high-Sc 
spectra transition from k-9 (inertial-convective) to k-l (viscous-convective) scalin4 . 
The ratio l*/l,, where the Kolmogorov scale is empirically defined as 1, = ( v 3 / s ) ~ ,  
converges to  a constant value in the limit of large Re and large Sc. Based on Hill’s 
(1978) analysis of measured spectra, the representative value 1* = 201, is adopted. 
(Individual measurements depart by as much as 20% from this value.) 

The model spectrum of figure 4 for the case Sc, = 600 exhibits the corresponding 
transition in the vicinity of K ,  = 0.07. The requirement K ,  = 0.07 a t  1 = 1’ for 
Sc, = 600, where K ,  = L,  k = 2m%$1;,/l, gives the result L,  = 5.51,, which relates 
model lengths to  physical lengths. 

The second empirical datum that is introduced is the amplitude coefficient p of the 
measured spectrum in the inertial-convective range, defined by E ( k )  = PXE-ik-i. 
Based on Hill’s (1978) survey of measured spectra, the value p = 0.8 is representative, 
with an uncertainty of about 10 %. Substituting E = v3/ lR,  the inertial-convective 
spectrum becomes E ( k )  = ( p x / v )  1,g k-;. Introducing K ,  = L,  k ,  dividing by xTK L,, 
and substituting the definition of T, and the relation v = UMSc ,  the result 

is obtained. Based on the definitions of L,, Re, and Sc,, this gives 

For the inertial-convective range model spectrum of figure 4 for the case Re, = lo4, 
Sc, = 0.7, a fit of a line of slope 3 to the plotted quantity KI, EB(KB) gives 

K,gE,(K,) = 0.047. 

Setting this equal to KBgEB(KB) as given by ( 1  1 )  and taking L J l ,  = 5.5 and p = 0.8 
yields Scs = 0.51Sc. 

Finally, Re, = 2.5Re is obtained by inserting this result into the relation Re,Scs = 
ReSc/PrT (which follows from the observation in $2 that both of these quantities are 
equal to D T / D M ) ,  where the empirical quantity Pr, is assigned a representative value 
0.8. Most measurements of Pr,  are within 20% of this value (Hinze 1975). 

Recall that the quantity Re is the local turbulence Reynolds number v T / v ,  which 
need not be the same as a nominal Reynolds number based on the overall flow 
configuration. Local values of vT/v are often unavailable. One robust approach to  
obtaining a fully quantitative comparison between model results and measurements 
would be to employ the present formulation as a sub-grid-scale model coupled to a 
large-eddy or other comparable simulation in which v T / v  is continually updated 
locally. This approach would require only the flow geometry and fluid properties as 
inputs. 

With the specification of model parameters in terms of physical quantities thus 
completed, additional properties of the spectral array of figure 4 are examined. (The 
‘spectral array’ is the family of power spectra parameterized by Sc.) First, the Sc,- 
dependence of the amplitude and the wavenumber range of the inertial-convective 
regime is considered. The scaling prediction is obtained applying reasoning analogous 
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to the derivation of (11) to  model spectra. This leads to the elimination of all ratios 
of empirical to model quantities in (1 l ) ,  yielding the prediction that the amplitude 
should vary as Scgi for given K,. Therefore the inertial-convective range of the 
spectrum of figure 4 for the case Scs = 0.018 should be parallel to, but a factor 
(0.018/0.7)-f = 3.4 above the corresponding range for the case Scs = 0.7. Similarly, 
the amplitude ratio 0.1 1 is obtained for the case Sc, = 600 relative to  the case Scs = 
0.7. Figure 4 indicates that  the computed spectra obey these relationships despite the 
fact that  the inertial-convective ranges for high and low Sc, are poorly resolved. 

To investigate the low-wavenumber cutoff of the inertial-convective range, a 
computational domain larger than L would be required. Since the low-wavenumber 
cutoff is of less interest than the high-wavenumber properties, the computational 
domain was set equal to  L in order to  maximize high-wavenumber resolution. 

The scaling analysis of $4.1 indicates that the high-wavenumber cutoff of the 
inertial-convective range occurs at K ,  of order L,/LK = Scgt for Scs of order unity 
or yreater. Consistent with this, figure 4 indicates cutoff K ,  values in the vicinity of 
Stir = 1.2 and 0.04 for Scs = 0.7 and Sc, = 600 respectively. (Recall that  the inertial- 
to-convective transition wavenumber was taken to occur at K ,  = 0.07 for Sc, = 600 
based on the computed spectrum.) For Sc, < I ,  it is shown in $4.1 that the cutoff 
scale is of order L ,  = Sc;+L,, corresponding to K ,  of order Scb. For Scs = 0.018, this 
implies a cutoff in the vicinity of K ,  = 0.37, consistent with the computed spectrum 
of figure 4. 

Further comparisons require additional explanation of the relationship between 
physical quantities and the axes of figure 4. To plot a spectrum expressed in the usual 
Batchelor coordinates (i.e. normalized by X t ,  1, and parameterized by k, = 1, k) in 
terms of the model coordinates according to  (9), the following transformation 
is applied. First, wavenumbers are mapped from k, to K ,  according to K ,  = 
(LB/lB) k, = (Sc,/Sc)-~(L,/ZK) k,. Based on the foregoing empirical estimates, this 
gives K ,  = 7.7kB. Secondly, the Batchelor spectrum is multiplied by ( X t K I B ) /  
(xTK A,) .  Substitution of the appropriate definitions and relations reduces this ratio 
to  (lB/LB)3. It is especially convenient to plot the quantity K;gB(KB). A plot of this 
quantity in model coordinates is obtained from a Batchelor-scaled plot by 
multiplying the ordinate by lB/LB and dividing the abscissa by the same factor. On 
a log-log plot, this transformation has the effect of shifting the plotted curve along 
a line of slope - 1 without changing its shape. Also, the quantity $ r K ; g B ( K B )  dK, 
is invariant under this transformation. This integral thus has the value + in model 
coordinates as well as in the usual Batchelor coordinates (Gibson 1968b). (In fact, the 
definition of TK has been chosen so as to preserve this normalization, as explained in 
the Appendix.) These properties are convenient for distinguishing effects of 
coordinate scalings from inherent features of the spectrum. 

Kerr’s (1990) spectrum obtained by direct numerical simulation for the case Sc = 
0.5 is plotted in this format in figure 4. The spectrum that he obtains for Sc  = 1.0 
collapses to  the same curve, and his spectrum for Sc = 0.1 deviates only slightly from 
this curve, with no discernible deviation at high wavenumbers. 

Collapse of Batchelor-scaled spectra in the limit of high Sc, though not compelled 
by theory (Kraichnan 1968), follows from the scaling properties presumed to govern 
the various spectral ranges (Gibson 1968b). As Sc decreases below unity, the scalings 
governing the amplitude and high-wavenumber cutoff of the inertial-convective 
regime cause the peak of the quantity K i  EB(KB) to rise and to  shift to  lower K,. 
Since the integral of this quantity is preserved, the high-wavenumber falloff must 
depart from the high-Sc functional form. 

13 FLM 231 
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Kerr’s results indicate that deviations from high-Sc behaviour become significant 
only a t  Sc well below unity. This inference is qualitatively consistent with 
experimental results concerning a related high-Sc property, the viscous-convective 
spectral scaling (Hill 1978). (With regard to quantitative consistency, note that a line 
of slope unity projected downward from the leftmost point of Kerr’s spectrum does 
not merge with the viscous-convective range of the model spectrum for Sc, = 600. 
This discrepancy reflects the inexactness of the empirical inputs, since amplitudes 
and cutoffs of model spectra have been referenced to their measured counterparts.) 

The upshot of these observations is that dissipation-range collapse should be 
exhibited only by spectra whose inertial-convective ranges meet the high-Sc 
‘universal curve’ at a point well to the left of the peak of K i E , ( K , ) .  As discussed 
in 54.1, model spectra roll off more gradually than Kerr’s spectra in the dissipation 
range, so the area normalization requires high-Sc model spectra to exhibit lower 
peaks than Kerr’s spectra. Therefore, dissipation-range collapse of model spectra 
does not extend to Sc as low as for spectra from Kerr’s simulations. 

Apart from this discrepancy and aspects of inertial-diffusive scaling discussed in 
$4.1, the model spectra of figure 4 agree with the trends and features of the spectral 
array as summarized by Gibson (1968b). (Compare the Batchelor-scaled spectral 
array shown in figure 4 of that reference.) This comparison supports the analogies 
that relate model parameters to physical quantities. It is noteworthy that these 
analogies lead to a comprehensive description of scalar mixing that does not involve 
dynamical quantities such as 8 and u. It is not surprising that this can be achieved, 
because scalar mixing is governed solely by the kinematics of the flow field, so a 
model need only capture the relevant kinematics in order to characterize mixing 
properly. It is perhaps more surprising that the spectral array is well characterized 
by a formulation based on instantaneous rearrangements rather than continuum 
flow. In  the Appendix, some of the standard relationships governing transport and 
mixing are rederived in a generalized framework in order to demonstrate that many 
intuitive notions based on continuum flow remain valid in the present context. 

5. Intermittency 
Some model properties considered thus far are sensitive to fluctuations resulting 

from the stochastic nature of the rearrangement process. Features of the scalar 
dissipation p.d.f. and deviations of certain spectral scaling exponents from estimated 
values have been interpreted as manifestations of such intermittency effects. 

The most significant manifestations of intermittency are the scaling properties of 
quantities that are highly sensitive to extreme fluctuations of the scalar field. Two 
families of scaling exponents that are sensitive to extreme fluctuations have been 
studied extensively, the generalized dimensions D, and the structure-function 
exponents cn. To investigate the intermittency properties of the model, these 
exponents are determined from simulated realizations by procedures similar to those 
applied to measurements of the scalar field along a line. 

It has been proposed on the basis of scale similarity that the average xr of the 
scalar dissipation rate over a zone of size r should exhibit scaling of the form 
((xr/xL),) - ( L / r ) p ;  in the inertial-convective range (Monin & Yaglom 1975). 
(Primes on scaling exponents serve to distinguish them from exponents governing 
energy-dissipation intermittency .) This scaling has been confirmed experimentally 
(Antonia & Sreenivasan 1977). I n  more recent work, the scaling exponents have been 
reparameterized in terms of a family of generalized dimensions D, = 3 - ,ui / (q-  1) 
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FIQURE 7. Log-log plot of ((xr/xL)q) versus L / r ,  where x, is the average of the scalar dissipation 
rate over a size-r interval, computed for Re, = lo4 and Sc, = 0.7.  For given r,  the plotted quantity 
increases with increasing q, with the respective symbols denoting q = 2-10. The slopes of the fitted 
straight-line segments are the inferred values of the scaling exponents pi. 
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FIQURE 8. Generalized dimensions D, computed in the inertial-convective range for Re, = lo4 and 
Sc, = 0 . 7 :  0 ,  p = 1 ; A, p = 4;  0,  p = 8; measured: -, Sreenivasan 8z Prasad 1989; x , Antonia 
& Sreenivasan 1977. 

that can be transformed to obtain the multifractal spectrum of the dissipation field 
(Prasad, Meneveau & Sreenivasan 1988). Computed results are reported here in terms 
of D, to facilitate comparison to recent measurements (Sreenivasan & Prasad 1989). 

Figure 7 illustrates the determination of the exponents 11; from simulations by a 
method like that of Sreenivasan & Prasad. Power-law scaling is obtained because the 
requisite scale similarity is built into the model. Computed and measured D, values 
are plotted in figure 8. 

Statistics were gathered for 10 large-eddy turnover times (defined in $2) for the 
cases p = t and p = Q, but for only one large-eddy turnover time for p = 1 owing to 
the high computational cost of that case. Since p = $  corresponds to the 
Kolmogorov eddy-size distribution, it is the case comparable to measurements. 

In view of the potential sensitivity of large-q statistics to computational artifacts, 
several runs were performed for p = Q involving variations of spatial resolution, time- 

13-2 
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K ,  = Lk 

FIGURE 9. Power spectrum EL of the scalar dissipation rate, computed for Re, = lo4 and Sc, = 0.7.  
(The subscript denotes normalization by xzL, where x is the mean scalar dissipation rate.) A line 
segment of slope pi- 1 = 2 - 0 ,  = -0.606 is plotted for comparison. (The numerical value is based 
on the q = 2 fit of figure 7 . )  

step, Re,, and the random-number seed. These variations had only a slight effect on 
the results, indicating that the p sensitivity evident in figure 8 is a property of the 
model rather than a computational artifact. Another sensitivity test involved 
adoption of the quintuplet map defined in $2 instead of the triplet map. For p = $, 
the D, values based on the quintuplet map were found to be consistently lower than 
those based on the triplet map by about 0.05, indicating that the results are not very 
sensitive to the choice of mapping rule. 

It is not evident whether the differences between the results for the case p = $ and 
measured values are statistically significant, because measurement precision was not 
reported. Precision is impacted both by spatial differentiation of the scalar field and 
by taking high moments of the differentiated field. Comparison of the two sets of 
measurements plotted in figure 8 to infer precision may be misleading because large- 
q results are the least reliable, but the measurements are in best agreement a t  the 
largest q value for which a comparison is available. In any event, it  is evident that 
model results are in rough, if not exact, agreement with measurements. 

Computed D, values for negative q (not shown) are much larger than measured 
values. For negative q, D, is sensitive to incipient singularities of the inverse of the 
scalar dissipation, i.e. to zones of low dissipation. As discussed a t  the end of $2, zones 
of low dissipation are disproportionately weighted in the model because the 
computational domain is effectively a space curve locally aligned with the scalar 
gradient. As emphasized in that discussion, the model provides a better rep- 
resentation of the ‘active ’ (high-dissipation) than of the ‘passive ’ (low-dissipation) 
zones of the scalar field. 

Scale similarity implies that the scalar intermittency exponent pol defined by the 
relation ( ~ ( z ) ~ ( z + r ) )  - r-po in the inertial-convective range, is identical to  pi 
(Monin & Yaglom 1975). Therefore the power spectrum of scalar dissipation should 
scale as I&-’ in the inertial-convective range. The model exhibits this scaling, as 
indicated by the computed power spectrum plotted in figure 9. 

The scalar structure function of order n is defined as <[c’(z, t)--c’(z+r, t ) ] ” ) .  Scale 
similarity implies ( [ c ’ ( z , t ) - c ’ ( z + r ,  t ) ] ” )  - rcn (Van Atta 1971). 
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PIQURE 11. Scalar structure-function exponents C:, computed in the inertial-convective range for 
Re, = lo4 and Sc, = 0.7 : A, base case; 0, replicate based on a different random-number seed. For 
2 < n < 6, vertical line segments span the range of reported point measurements compiled by 
Antonia et al. (1984). For 8 < n < 12, vertical line segments are error bars reported by Antonia 
et al. (1984) based on their measurements. 

Figure 10 illustrates the determination of the scalar structure-function exponents 
c:, from simulations. Compared to  figure 7 for the generalized dimensions, the scaling 
range is narrower and statistical fluctuations are larger. Computed and measured cn 
values are plotted in figures 11 and 12. As a baseline for comparison, note that c:, = 
$n if intermittency effects are absent, i.e. if fluctuation statistics are purely Gaussian 
(Van Atta 1971). 

Runs performed for p = Q involving variations of spatial resolution, timestep and 
Re, indicate a t  most a slight sensitivity to these variations. The effect of changing the 
random-number seed is more significant, as shown in figure 11. Longer run times 
could improve the statistical precision. The precision indicated by figure 11 is 
sufficient for present purposes, since it is comparable to experimental precision. It is 
evident that model results and measurements are in satisfactory agreement. More 



384 

3 

A .  R.  Kerstein 

0 2 4 6 8 10 12 14 16 

FIQURE 12. Scalar structurefunction exponents 5:, computed in the inertial-convective range for 
Re, = lo4 and Sc, = 0.7 : 0,  p = 1 ; A, p = $ (base case of figure 1 1 )  ; 0,  p = #. Measurements as in 
figure 1 1 .  
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n 

precise measurements and longer computational run times would provide a more 
stringent test of that agreement at large n. 

Comparison of figures 1 1  and 12 indicates that the p sensitivity of the computed 
results is statistically significant. Satisfactory agreement with all measured cn values 
is obtained only for the value p = Q corresponding to the Kolmogorov eddy-size 
distribution. This supports the contention that the eddy ensemble generated by the 
model is physically meaningful, because it reproduces the measured fluctuation 
statistics only when the physically correct eddy-size scaling is adopted. 

The set of exponents cn for p = Q was also computed from simulations using the 
quintuplet map instead of the triplet map. For each n value, it is found that the 
result based on the quintuplet map falls between the pairs of computed triplet-map 
values shown in figure 11, indicating that these results as well as the results for D, 
are not very sensitive to the choice of mapping rule. 

The favourable comparisons between computed and measured scalar intermittency 
statistics are particularly noteworthy in the context of intermittency models 
proposed to date. Previous models have achieved good agreement with measurements 
only through the incorporation of empirical inputs or adjustable parameters 
(Andrews & Shivamoggi 1990). The only quantitative input required in the present 
model is the exponent p governing the relation between eddy size and diffusivity, 
whose value Q follows from dimensional analysis based on the Kolmogorov picture of 
the inertial-range cascade. The results are sensitive to  p but not to the mapping rule 
chosen to represent individual eddies. As in $4.1, the parameters Re, and Xc, serve 
to demarcate the scaling regime but do not determine scaling exponents, which are 
asymptotic properties of the limit Re, + co. 

The aspect of the model that  determines its intermittency characteristics is the 
random process governing the sequence of rearrangement events. Here, the simplest 
possible assumption concerning this process has been adopted. Namely, it has been 
assumed that the locations and epochs of individual events are statistically in- 
dependent, so that the sequence of events constitutes a Poisson process in space and 
time. The good agreement with measurements lends support to  the proposal 
(Andrews et al. 1989) that  Poisson statistics may provide a sound basis for modelling 
intermittency . 
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6. Fractal dimension of scalar isopleths 
Many geometric properties of an isopleth (constant-property surface) in an 

isotropic concentration field are directly related to properties of the set of points 
comprising the intersection of the isopleth with a straight line. In particular, the 
fractal dimension D, of concentration isopleths in turbulence has been estimated 
from line measurements by applying the ‘additive law ’, which states that the 
isopleth fractal dimension in d-dimensional space is n plus the fractal dimension of 
the intersection of the isopleth with a (d-n)-dimensional manifold (Prasad & 
Sreenivasan 1990). For the case considered here, d = 3 and n = 2. In view of this 
relationship, one can determine D, for the isopleth by determining D, for its 
intersection with a line. D, for the line intersection is considered here because the set 
of points comprising the intersection is analogous to level sets of simulated 
realizations of c(z, t). 

It is not immediately evident whether level sets of the scalar field c(x, t )  or of the 
mean-subtracted scalar field c’(x,  t)  are more directly analogous to measured level 
sets. To identify the qualitative distinction between these level sets, note that each 
level set of c’(x, t )  is a homogeneous random process on the spatial domain, and that 
excursions of c ’ ( z , t )  to levels far exceeding (~’”4 are rare. The latter property 
indicates that the level sets of c’(z, t )  are not all statistically equivalent. In contrast, 
each level set of c ( x , t )  is contained within a finite interval of the spatial domain, 
typically of order L. The initial and boundary conditions assure that all level sets of 
c ( x ,  t )  are statistically equivalent. The term ‘level invariance’ is adopted to denote 
this property. 

The properties of spatial homogeneity and level invariance are mutually 
incompatible not only in the present modelling framework, but for any scalar field 
with finite ( c ’ ~ ) .  In fact, experimental configurations can satisfy either property at 
best over a limited spatial extent or over a limited range of concentration levels. It 
would therefore appear that neither type of level set can be unequivocally identified 
as the model analogue of measured level sets. 

This ambiguity is of practical relevance because model computations indicate that 
the two types of level sets exhibit qualitatively different geometric properties. (The 
cases considered, methods of data reduction, and detailed results are presented in 
Kerstein 1991 b. Here, the results are briefly summarized.) Level sets of c(z,  t )  exhibit 
fractal scaling with D, = 0.44 for the triplet map and D, = 0.41 for the quintuplet 
map. (Scaling analysis applied to the model yields the estimate D, = $, identical to 
the scaling prediction for real flows (Sreenivasan et al. 1989). Deviations from the 
scaling estimate reflect intermittency effects.) Level sets of c’(z, t)  do not exhibit 
fractal scaling, but can be characterized using the ‘local dimension ’ defined by Miller 
& Dimotakis (1991). 

Experimental observations of fractal scaling in a variety of turbulent flows are 
summarized by Prasad & Sreenivasan (1990), who conclude that D, = 0.36)0.05. 
The deviation of this value from the scaling prediction D, = f, though perhaps not 
statistically significant, is consistent with a modified scaling analysis that accounts 
for local fluctuations of flow-field properties (Meneveau & Sreenivasan 1990). Other 
measurements (Miller & Dimotakis 1991) indicate the absence of fractal scaling. 
Comparisons of the latter measurements to model results in terms of local dimension 
are presented elsewhere (Kerstein 1991 b). There it is proposed that the conceptual 
distinction between the two types of level sets may manifest itself experimentally 
through subtle differences among measurement techniques or flow conditions. 
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Here and in $5, the quintuplet map has been found to yield comparable or slightly 
better agreement with measurements than does the triplet map. The improvement 
is not large enough to indicate a preference for the quintuplet map, in view of the 
intuitive appeal of the triplet map as a representation of a single eddy (figure 2). 
However, i t  is interesting to note that the quintuplet map or higher ‘n-tuplets’ may 
have some mechanistic basis if postulated helical or related structures become 
recognized as the canonical structures of turbulent eddies. 

7. Lagrangian analysis 
Since the present modelling approach involves simulation of time-histories of a 

self-contained computational domain (rather than a fixed control volume imbedded 
in a flow), the model can be interpreted from a Lagrangian as well as an Eulerian 
viewpoint. To illustrate the Lagrangian interpretation, the dispersion of a spot of 
scalar contaminant is considered, yielding the model analogue of Richardson’s 
dispersion law (Monin & Yaglom 1975). 

Regard the spot as infinitesimal initially. After an elapsed time t ,  the spot size s 
has increased to a finite value owing to molecular diffusion and rearrangements. For 
t < TK, where 5‘k is defined below (9), the spot is affected only by molecular diffusion, 
so s2 is of order D,t .  Beginning at  t of order T K ,  the spot also grows owing to 
rearrangements. A size4 event containing some or all of the spot creates three images 
distributed over a region of order I ,  resulting in a spot size s of order 1 (or possibly 
greater, if the spot size prior to the event exceeds I ) .  Thus, s is at least of order l ( t ) ,  
where Z(t )  is the size of the largest mapping that intersects the spot during [0, t ] .  (For 
t < TL, s is no larger than order I ( t )  because there is no other dispersion mechanism 
to make it larger.) 

Note that s may greatly exceed the total measure of the zones in which 
‘significant ’ contaminant concentrations (based on any convenient criterion) are 
found. This reflects the streakiness of the scalar, i.e. the tendency of the stirring 
process to form thin ribbons of contaminant separated by essentially contaminant- 
free regions (Garrett 1983). 

The t dependence obtained for s ( t )  depends on whether the ‘typical’ (most 
probable) or the root-mean-square value of s ( t )  is considered. The typical value is of 
the order of the size of the largest event whose characteristic time 7l is of order t or 
less. According to (8), this implies s ( t )  - t l ’ ( z -p)  for TK < t < TL. Specializing to  p = 
i, this implies s ( t )  - ti. This scaling can be expressed in the form ds2/dt - P,(s), 
where the effective diffusivity DT(s) governing the dispersion process scales as ST. The 
Richardson law is thus recovered. 

The mean-square spot size ( s 2 ( t ) )  scales in the same manner as the mean-square 
Eulerian displacement of a passive marker because a size-1 event has an order-1 effect 
in both cases, irrespective of the magnitude of 1. (An eddy of size I % s in a real flow 
induces an order-1 Eulerian displacement, but has less effect on 8.) As shown in the 
Appendix, the Eulerian displacement increases diffusively with diffusivity D, for all 
t .  This gives ( s 2 ( t ) )  - t ,  in disagreement with the Richardson law. Likewise, the 
Eulerian result disagrees with theoretical (Taylor 1921) and experimental (Warhaft 
1984) results indicating that the mean-square Eulerian displacement is proportional 
to t2 in the regime TK < t < TL. The latter scaling is a consequence of the constant- 
velocity displacement induced by a size-L eddy over that time interval. This 
mechanism is not captured by the present formulation because rearrangement events 
are instantaneous. 
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These considerations indicate that the applicability of the model to transient 
dispersion may depend on the precise question that is addressed. 

8. Discussion 
The linear-eddy modelling approach is shown here to provide an economical, 

physically sound characterization of turbulent mixing based on a one-dimensional 
stochastic process that emulates higher-dimensional convective stirring mechanisms, 
with sufficient spatial resolution to allow direct, concurrent implementation of 
molecular diffusion. This direct implementation of molecular diffusion in Monte 
Carlo simulations of individual mixing-field realizations is the key to obtaining 
computed Sc dependences consistent with physical intuition and experimental 
results. 

A feature common to both the present and previous formulations is the 
representation of convective stirring by a rearrangement process consisting of a 
sequence of instantaneous, statistically independent mapping events. In the present 
formulation, the mapping rule that is adopted is the ' triplet map ' (and in some cases, 
a variant denoted the ' quintuplet map '), advantageous because it emulates the 
multiplicative increase of scalar gradients that is induced by compressive strain. It 
has also been noted that the effect of a single mapping event on the scalar field is 
analogous to the effect of an eddy of corresponding size. 

Previous applications of the linear-eddy approach addressed single-point statistics 
of the mixing field. A study of mixing-field microstructure, characterized primarily 
by multipoint statistics such as power spectra, is reported here. Model computations 
are found to reproduce key features of measured scalar power spectra, parameterized 
by Re and Sc, and to yield numerical values of scaling exponents governing higher- 
order fluctuation statistics that are close to measured values. Other aspects of 
microstructure that are examined include the probability distribution of the scalar 
dissipation rate and the fractal dimension of level sets. 

To place these results in perspective, it should be noted that the only numerical 
input needed to obtain the aforementioned results is an exponent governing the size 
distribution of mapping events. This exponent is determined from dimensional 
considerations as prescribed by the Kolmogorov cascade picture of inertial-range 
turbulence. Thus, the qualitative and quantitative agreement that is obtained does 
not rely on any empirical inputs or adjustable parameters. 

Spectral scaling properties of the model are interpreted on the basis of scaling 
analysis analogous to the usual reasoning. The agreement with the principal features 
of the measured spectral array appears to be a consequence of (i) the explicit 
incorporation of inertial-range scaling, (ii) a physically sound representation of the 
viscous range achieved by formulating a mapping rule that emulates compressive 
strain, and (iii) direct implementation of molecular diffusion. Therefore the spectral 
results are not very surprising, though they are important indicators of the 
soundness of the model. 

In contrast, there is no reason to assume that the model embodies the correct 
fluctuation properties determining higher-order scaling exponents such as scalar 
structure-function exponents. It is therefore noteworthy that the model yields 
numerical values close to measured results. In particular, it is noteworthy that the 
agreement is better when the size distribution of maps is specified in accordance with 
the Kolmogorov inertial-range scaling than when other, arbitrary scalings are 
chosen. These results suggest that the eddy concept, whose model analogue is the 
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individual mapping event, has some quantitative validity not only as a picture of 
typical behaviour, but also as a picture of instantaneous deviations from typical 
behaviour. (This proposal is also supported by a recent analysis of velocity 
fluctuations in turbulence (She & Orszag 1991).) In  particular, the present results 
indicate that the postulated statistical independence ( '  Poisson ensemble ') of 
mapping events is a reasonable working hypothesis, consistent with an earlier 
proposal (Andrews et al. 1989). 

The scaling properties associated with the statistical ensemble are also of interest 
from the viewpoint of chaos induced by iterated nonlinear maps. Deterministic 
iteration of two-dimensional nonlinear maps that emulate scalar-gradient ampli- 
fication by compressive strain has been shown to generate chaotic scalar fields 
exhibiting multifractal scaling (Ott & Antonsen 1989). The values of the generalized 
dimensions D, characterizing this scaling are model-dependent. It was suggested that 
extension to turbulent mixing might require randomization of the ensemble of maps. 
This suggestion is implemented, in effect, in the present one-dimensional formulation. 

In  this regard, i t  is noteworthy that non-trivial fractal and multifractal scalings 
and related intermittency properties arise in the present formulation as a 
consequence of the specified size distribution of maps, with no fractal inter- 
dependence (in fact, no interdependence whatsoever) among the spatial locations of 
mapping events. This result is consistent with the finding of Kraichnan (1990) that 
many fluctuation properties of turbulence can be explained without recourse to a 
fractal causative process. 

The present work can also be viewed from the perspective of efforts to develop 
robust computational procedures applicable to complicated mixing flows. Although 
the present formulation, supplemented by configuration-specific empiricism, can 
address issues of practical importance (Kerstein 1988, 1989, 1990, 1991 a),  its 
greatest potential utility is as a subgrid mixing model coupled to a large-eddy or 
other comparable simulation. The model is readily adapted to this application by 
relating the linear-eddy nominal Reynolds number Re, to the large-eddy cell 
Reynolds number, and implementing a linear-eddy simulation within each large- 
eddy cell. Alternatively, the large-eddy-simulated flow field may convect Lagrangian 
fluid particles, each of which has an internal structure that evolves according to a 
linear-eddy simulation. Rules determining the exchange of species between nearby 
fluid particles would be needed, as in other subgrid mixing models. The empirical 
relations of $4.2, expressing model parameters in terms of physical quantities, 
provide a basis for quantitatively accurate coupling of the subgrid model to the 
large-eddy simulation. 

Such a formulation would be compatible with massively parallel computation 
because a linear-eddy subgrid model would involve greater temporal as well as 
spatial resolution than a large-eddy simulation. Therefore processors implementing 
individual linear-eddy simulations would compute for many timesteps between 
communications with other processors. 

The model is subject to several artifacts whose impact on predicted mixing-field 
microstructure has been identified. First, the representation of eddies by in- 
stantaneous events rather than by processes of finite time duration causes 
discrepancies in the exponents governing the inertial-diffusive spectral scaling and 
certain transient dispersion scalings. Secondly, implementation of the model in one 
spatial dimension simulates, in effect, the scalar field along a time-varying space 
curve locally aligned with the scalar gradient. As explained in $ 2 ,  this causes 
excessive creation of zero-gradient points, impacting properties sensitive to the 
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prevalence of low-gradient regions. Thirdly, discontinuous derivatives introduced by 
the mapping process cause excessive high-wavenumber spectral input, possibly 
explaining the slower-than-observed high-wavenumber spectral falloff. 

Despite these limitations, it is evident that the present formulation captures many 
key features of turbulent mixing. The scope of the approach, encompassing single- 
point scalar properties, spectral and higher-order multipoint scaling properties, 
fractal geometry and Lagrangian scalings, provides a unified treatment of a variety 
of phenomena usually addressed using disparate models whose mutual compatibility 
is not self-evident. The demonstration here that all these properties are captured 
within a simple modelling framework is compelling evidence that these properties 
can be viewed as various manifestations of a single postulated scaling property 
(inertial-range self-similarity) of high-Reynolds-number turbulence. 

The author would like to thank Paul Dimotakis and Eric Siggia for helpful 
discussions. This research was supported by the Division of Engineering and 
Geosciences, Office of Basic Energy Sciences, US Department of Energy. 

Appendix. Analysis of transport and mixing 
Expressions are derived that relate the model turbulent diffusivity to other model 

parameters and to physical quantities. Some of the expressions are formally identical 
to standard results governing turbulent mixing. The derivations presented here serve 
to formalize the analogy between model parameters and physical quantities. In 
particular, the analogy between the model scalar power spectrum and the measured 
spectrum is formalized. 

Consider first the diffusion coefficient D, governing the random walk of an 
infinitesimal fluid element. The total mean-square displacement induced by 
statistically independent rearrangement events during a time interval t is 

where 8, is an individual displacement and the random variable N is the number of 
displacements of the fluid during a time interval t .  The right-hand expression, in 
which (8') denotes the mean-square displacement induced by a single event, follows 
from the assumptions that individual displacements are statistically independent 
with respect to magnitude as well as time of occurrence, and that the mean individual 
displacement is zero. (The latter property is a consequence of spatial homogeneity.) 

The size-l mappings that can displace a given fluid element are those whose centres 
fall within a distance tl from the fluid element, i.e. within an interval of size 1 centred 
at the fluid element. Based on the definitions of A and f(l), the frequency of 
displacements induced by eddies in the size range [ I ,  l +  dl] is Alf(1) dl. Therefore 
<N) = Rt, where R = A J l f ( l )  dl is the total frequency of displacements. Let (6 ' ( l ) )  be 
the mean-square displacement induced by one size-l mapping. Then (6') is the 
frequency-weighted average of ( S 2 ( l ) ) ,  namely 

(a2) = R-'A l f ( l )  (S ' (1) )  dl. (A 2) I 
(P(1))  is evaluated by expressing it as (P(1) )  = l - ' ~ ' "  6'(11 z )  dz, where S2( l  I z )  is 

the square of the displacement given that, after displacisent, the fluid element is a 
distance z from the centre of the size-1 segment causing the displacement. (This 
expression is based on the uniform distribution of z over [ -$, $1. It is convenient but 
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not essential to  condition on the relative location after rather than before 
displacement. This avoids explicit consideration of the three post-images of each 
fluid-element pre-image.) For the triplet map, it follows from (2) that 

Substitution of (A 3) into the expression for (cY2(Z)) gives (a2(,!)) = &Z2. Based on this 
result, (A 1 )  and (A 2), and the relation (Hinze 1975) 

(3) of $2  is obtained. 
Next, the model analogue of a standard expression for the mean scalar dissipation 

rate R is derived. (Here, physical quantities are denoted by hats where needed to 
distinguish them from model parameters.) Tennekes & Lumley (1972) show that the 
balance equation for the mean-subtracted scalar c‘ reduces to 

(A 5 )  

DT = ( ( A x ) 2 ) / ( 2 t ) ,  (A 4) 

- ( d u )  * vo = DM( (VC’)Z) = ii 
in steady homogeneous flow, where u is the fluid velocity referenced to  the mean flow, 
V Q  = ( V c )  is the imposed scalar gradient, and the right-hand equality is one of 
several equivalent defining relations for f that appear in the literature. (A non- 
equivalent definition is also prevalent, differing from (A 5 )  by a factor of 2. Here, the 
conventions adopted by Batchelor (1959) are followed.) The turbulent diffusivity BT 
is operationally defined as the coefficient relating the imposed scalar gradient to the 
flux of c’ according to the Fourier law (c’u) = -B’,V@ (Hinze 1975). In  conjunction 
with (A 5), this gives 

= 2BT(V@)? (A 6) 

The model parameter x is defined as 2DM((Vc’)z )  based on the discussion in $2. To 
establish the analogy between physical quantities and the corresponding model 
parameters D,, D ,  and x, it must be shown that the model obeys the analogue of 
(A 6), namely x = WT(VO)2. This result is derived by considering the time evolution 
of the mean-subtracted scalar c‘ associated with a given fluid element. Denote the 
scalar value within the fluid element as c at time t and c + Ac a t  time t + At, where At 
is small. Likewise, denote the location of the fluid element as x and x + A x  a t  the 
respective times. Owing to the non-local character of mapping events, Ax is not small 
in each realization, but its mean-square value, governed by (A 4), is of order At. In  
this notation, c’(t)  = c - x / L  and c ’ ( t+At )  = c + A c - ( x + A x ) / L  for the initial-value 
problem formulated in $ 2.  Squaring the latter quantity, ensemble averaging, and 
taking ( c t 2 ( t +  A t ) )  = ( d 2 ( t ) )  owing to  statistical stationarity, the result 

’ ((Ac)~)+((Ax)~)/L~-~(AcAx)/L+~(c’(~)Ac)-~(c’(~) A x ) / L  = 0 (A 7) 

is obtained. 

element changes only by molecular diffusion, 
The individual terms of (A 7 )  are evaluated as follows. Since c within a fluid 

AC = DM(V2c) At = DM(V2c’) At.  (A 8) 

Therefore ( (Ac) ’ )  is of order (A t )2 ,  which is negligible compared to other terms. 
   AX)^) is evaluated by applying (A 4), which gives    AX)^) = W , A t .  

Equation (A 8 )  indicates that Ac is of order At. In the limit of small At, the 
probability of non-zero A x  is proportional to At. Therefore (Ac  A x )  is of order (At )2 .  
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According to (A 8), (c’(t)  Ac) = D ,  At(c‘(t) V2c‘).  The familiar (Batchelor 1959) 
relation (c’(t)  V2c’) = - ( ( V C ’ ) ~ )  follows from the identity V -  (c’vc’) = c’V2c‘+ ( V C ’ ) ~  
by noting that the expectation value of the left-hand side of that identity vanishes 
owing to the spatial homogeneity of c’. Therefore 

2(c‘( t )Ac)  = - 2 0 , A t ( ( V ~ ’ ) ~ )  -XAt. 

Finally, the statistical independence of rearrangement events implies (c’(t)  A x )  = 
( c ’ ( t ) ) ( A z ) .  Both terms in this product vanish identically owing to spatial 
homogeneity . 

Substituting these results into (A 7), the terms of leading order in At give 

x = 2DT/L2, (A 9) 

which is analogous to (A 6) because V O  = 1/L for the configuration analysed here. 
The model thus obeys the key relationship that determines the overall mixing rate 
in terms of large-scale quantities. This is an essential property of any model intended 
to compute mixing properties of flow configurations specified in terms of large-scale 
characteristics. 

Finally, some relationships involving the scalar power spectrum E( k) are derived. 
The derivations follow Hinze (1975), with notation that encompasses both the usual 
three-dimensional analysis and the present one-dimensional formulation. In d-  
dimensional vector notation, a spectrum function #(k) is defined as 

where S ( r )  = (c ’ (x)  c’(x+ r ) ) .  (The reader is cautioned that slightly different 
definitions are adopted by some authors.) Isotropy implies that S(r )  = S(r )  and that 
the spectrum depends only on wavenumber magnitude k. Integrals of the spectrum 
over dk are considered. Isotropy implies $dk = 4n$p k2 dk for d = 3, and $dk = 

dk = 2 $” dk for d = 1. The ‘ three-dimensional power spectrum ’ E(k)  is defined as 
E ( k )  = 4nk22,(k), which subsumes the factor arising from the Jacobian of the 
transformation dk --f dk. (The subscript indicates that the spectrum function 
corresponds to a three-dimensional isotropic field.) The model analogue E(k)  is taken 
to be E(k)  = 2S“,(k), which subsumes the one-dimensional Jacobian factor. (The 
subscript indicates that the spectrum function corresponds to a one-dimensional 
isotropic field in this instance.) It is important to note that this is different from the 
usual ‘one-dimensional power spectrum ’, which is defined as the power spectrum 
obtained by applying a one-dimensional Fourier transform to the three-dimensional 
covariance function S,(r)  = S3(r) ,  and which can be expressed in terms of E(k)  by 
means of an integral transform. 

Noting that ( c ’ ~ )  = S(O), integration of (A 10) over dk gives ( d 2 )  =$pE(k)dk for 
d = 3 and the formally equivalent expression ( c r 2 )  = som E(k)  dk for d = 1. Noting 
also that (c‘V2c‘) = V2S(r)  the mean scalar dissipation rate x = ~ , ( ( V C ’ ) ~ )  can 
be expressed as -2D,V2S(r) based on the relation (c’(t)  V2c‘) = - ( ( V C ’ ) ~ )  noted 
earlier. Taking the inverse Fourier transform of (A lo), A is evaluated by applying 
the radial component r-2(a/ar) r2(a/ar) of V 2  to S(r) = f (sin kr/kr) k(k) dk,  giving 
Som k2E(k) dk = $ / ( 2 D M ) .  The one-dimensional analogue of this procedure gives the 
formally equivalent result 

m J- m 

Jr k2E(k) dk = x / ( 2 0 , ) .  (A 11) 



392 A .  R. Kerstein 

These formal equivalences involving integrals of the spectrum over dk and over 
k2dk are the basis of the assertion in 52 that power spectra of the simulated 
concentration field are directly analogous to measured three-dimensional power 
spectra. 

Equation (A 11)  provides a rationale for the model analogue of Batchelor scaling, 
specified by (9). Substitution of (9) and the definitions of TK, K,,  L ,  and Sc, into 
(A 11)  gives 

p L E , ( K , ) d K ,  = t, (A 12) 

the same result that is obtained for the physical quantity I," k i & , ( k B )  dk, based on 
the usual Batchelor scaling (Gibson 1968b). A value other than 4 could have been 
obtained in (A 12) by choosing a coefficient other than unity in the definition of TK. 
For example, the definition TK = L k / v  gives TK = [Pr,'Re/Re,] Re,k2/DT based on 
foregoing definitions, where the coefficient in square brackets has an estimated value 
of [(0.8) (2.5)]-l = 0.50. Were this definition adopted, the integral in (A 12) would 
equal unity instead of i, so all curves in figures 4 and 6 (including three-dimensional 
as well as one-dimensional results) would be shifted upward by a factor of 2.0. 
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